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Linear Classifiers
When should you use linear classifiers, and 
when should you use a more expressive 
class of functions?

The bigger your data set, the more 
parameters (of a function) you can learn 
from it. Linear classifiers have fewer 
parameters than most function classes, so 
you can learn a linear classifier with 
relatively little data.

source: http://mlpy.sourceforge.net/docs/3.5/lin_class.html



Loss Functions
Used to evaluate performance of models and guide training

0-1 loss: 0 if model gives correct label, 1 if model gives incorrect label

We usually care about the 0-1 loss, but minimizing 0-1 loss is computationally 
hard, so we use surrogate losses instead.



Loss functions: examples
Label space is {-1, +1}

Functions in hypothesis 
space are of the form 
sgn(f(x)), where f is a 
real-valued function 

From lecture slides



Gradient Descent
Procedure that finds a local minimum of a differentiable function: at each iteration, 
computing the gradient at the current guess and update the guess accordingly

In our case, we want to minimize average loss over a training set (our “values” are 
weight vectors taken from a parameter space).

Stochastic gradient descent: instead of computing the loss over the entire training 
set, we instead use a small subset of the training set. Each iteration of stochastic 
gradient descent makes less progress (or possibly no progress) toward a local 
minimum, but we can do more iterations with the same training time.



Example: Gradient descent using LMS loss
Recall from lecture that LMS loss is defined as ½ Σd(td − od)

2

The update rule is w’ = w + RΣd(td − od)xd

In the degenerate case where there is one training example, it is easy to see that 
this update rule reduces the square loss

o’ = w’Tx = (w + R(t − o)x)Tx = wTx + R(t − o)ǁxǁ2

If the original prediction is too small, then the update rule makes the new 
prediction larger, and vice versa



Decision Trees

Sunny Snowy Play 
Outside?

Y Y T

N Y F

Y Y T

N N F

Y N T

N Y F

N N T

Y N F

Entropy(S) = 1

Entropy(SSnowy) =

   =

Entropy(SSunny) = 

   = 



Decision Trees

Entropy(SSunny = Yes, SSnowy) =

    = 0.5

Sunny Snowy Play 
Outside?

Y Y T

N Y F

Y Y T

N N F

Y N T

N Y F

N N T

Y N F



Bias/Variance Tradeoff
- Bias: How likely is the model to learn the target function?

- High bias: The model is able to fully approximate target function
- Low bias: The model is not able to express the function

- Variance: How affected is the model by changes in training data?
- Low variance: Slight changes in training data does not affect model
- High variance: Slight changes in training data affects model heavily

- Bias and variance have an inverse relationship, we want to balance them



Bias/Variance Tradeoff



Overfitting
- The causes of overfitting are twofold

- Overly complex model
- Not enough data
- These lead you to fitting noise in the training data

- Bad news: overfitting is something you will encounter often

- Good news: It is easy to detect/fix



Detecting Overfitting



Fixing Overfitting
- Reduce complexity of model

- Complexity = #parameters
- Eg. Depth of decision tree

- Don’t train too long
- Going over training data multiple times can increase chance of overfitting

- Try obtain more training data
- Obtain new data from similar sources
- Use more data for training and less for validation/testing



Overfitting Illustration
- Black line represents true boundary 

between classes

- Data is noisy, certain points with 
incorrect/unexpected labels

- Green line represents overfitting 
model

- Model fits the noise in the training 
data, learning incorrect decision 
boundary

- This leads to errors when predicting 
test labels

- Model does not generalize well


